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Summary 

Buffer solutions are of great worth in analysis, in chemical and pharmaceutical research, in physiology and other fields of 
science and technology. On the other hand, buffer capacity is subject to precise algebraic treatment by using differential calculus. 
The location of the maximum and inflexion points in the buffer index against pH and in the volume of titrant added against pH 
plots for the titration of a weak monoprotic acid with a strong base, is the subject of consideration in this paper. In calculating 
buffer capacity in the titration of a weak acid with a strong base, an essential factor is the change in the volume resulting from 
dilution of the solution as titrant is added. 

Introduction 

As a matter of fact many chemical and biologi- 
cal processes are vitally dependent upon pH, in 
such a way that it is very important in laboratory 
work to be able to adjust the pH of a chemical 
system to a fixed value as well as to ensure that 
the pH will be maintained close to that value for 
the duration of a given experiment. 

In this context, a solution containing a fairly 
large amount of an acid and its conjugate base is 
called an acid/base buffer solution system. Buffer 
solutions are of great value in analysis, chemical 
and pharmaceutical research, physiology and 
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other fields of science and technology (King, 1965; 
Stumm and Morgan, 1981; Connors, 1985; Polster 
and Lachmann, 1989), because they allow the pH 
of a solution to be maintained with considerable 
accuracy at a nearly constant value, even on addi- 
tion of small quantities of strong acids or bases or 
on dilution. 

The ability of a solution to resist attempts to 
change its pH is called the buffer capacity (Van 
Slyke, 1922), which is defined by Eqn 1: 

dCB 
= ( 1 )  

dpH 

where dCa (and dC A) denotes the number of 
moles per liter of the strong base (or strong acid) 
added and is an expression of the rate at which 
the addition of strong base (strong acid) changes 
pH. 
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In many analytical textbooks (Sucha and 
Kotrly, 1972; Hulanicki, 1987), it is shown that 
the final expression for the total buffer index of a 
mixture of a weak acid and its salt (i.e., H A / N a A )  
is equal to the sum of the buffer capacities of the 
individual systems 

fl =/3H++/3oH +/3HA (2) 

On the other hand, the buffer contribution with 
respect to pH of the /3hA term is shown by means 
of a bell-shaped curve with a maximum at pH = 
pK a, the height of the maximum being dependent  
on the total concentration of the buffer solution, 

CA 

C A = [HA] + [ A - ]  (3) 

While the expressions derived in such texts are 
correct if the solution volume is assumed to re- 
main constant as the ratio of salt to acid varies, 
some different conclusions may be drawn if a 
titration process is being carried out. However, 
buffer capacity is subject to precise algebraic 
treatment using differential calculus. As a conclu- 
sion (Butcher and Fernando, 1966), it may be 
anticipated that in the calculation of buffer ca- 
pacity during the titration of a weak acid with a 
strong base, an essential factor is the change in 
volume resulting from dilution of the solution as 
titrant is added. 

In this paper, we discuss buffer capacity of 
H A / N a A  systems primarily f r o m  a general and 
didactic point of view. This paper is of an exposi- 
tory type, and we do not claim completeness in 
our treatment. For a more comprehensive and 
advanced treatment of some topics to which this 
paper may serve as a useful introduction, the 
reader is referred to Butcher and Fernando 
(1966). 

Theory 

Basic algebra 

If a weak acid HA of concentration C A and 
initial volume V 0 is titrated with a strong base 

(i.e., NaOH) of concentration Cn and volume V, 
then at any moment during the titration the con- 
dition of electroneutrality must be fulfilled 

[Na ÷] + [H +] = [ A - ]  + [ O H - ]  (4) 

Due to the volume ihcrease in the course of the 
titration, we obtain 

V 
r~T , t r ~ a + j = C B v 0 + v  (5) 

V0 
[ A - ]  = C A V<, + V f° (6) 

f/ is the molar fraction of the species H / A  ( j  = 0, 
1; for a monoprotic acid HA) 

[H/A] 
f/ CA ( j = 0 ,  1) (7) 

Its derivative with respect to pH is given by 
(Asuero et al., 1986): 

dpH 
- - I n  1 0 f / ( j - f i ) =  - I n  l O f i ( j - f l  ) (8) 

so that  for a monoprotic acid the formation func- 
tion, fi = E jfj, coincides with f r  

We assume that the ionic strength is left virtu- 
ally:unaltered by addition of the increment of 
base, so that variations in activity coefficient can 
be neglected. 

By definition of /3  we have (Guenther,  1975) 

/3 = m 
d(v) 

d[Na+] C n ~  V ~  
dpH 

V o dV 
= c B  ( 9 )  

( V 0 + V) e dpH 

The buffer value is inversely proportional to 
the slope of the titration curve and from Eqns 4 
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and 6 we have 

d 
/3 = -:-77.. ( [A-  ] + [OH-I - [H+]) 

opt-l- 

d ( V o p ; f o _ [ H + ] + [ 0 H _ ]  ) 
- dpH CAvo+ 

CAV o dV 
= -- v )2 fo  ( V o + dpH 

CAV° 
) + In 10 v ~ f o f  , + [H+I + [ O H - ]  

(10) 

By equating Eqns 9 and 10 the value of dV/dpH 
may be extracted 

dV V) 2 
=In 10 ( v ° +  

dpH V o 

× 

V° -~fofl [H +] + [OH-] + C A Vo + 

C A f  0 "4- C B 

(:i) 

which, on substitution into Eqn 9, gives for the 
buffer capacity the exact equation 

and the fraction titrated, T, which is defined as 
the ratio of the number of millimoles of base 
added as titrant to that of acid being titrated 

CBV V V 
T= CAVo CAVo Vp.eq. (15) 

CB 

we have for the ratio of the initial to actual 
volume 

V o 1 1 
- -  - (16)  V V Vp.eq. V°+V 1 + - -  1+  

Vo V:.e~. Vo 

and then, by combining Eqns 12-14 and 16, we 
obtain for the buffer capacity the final rigorous 
general description 

,nl0( 
/3 = 1 + rf----- 7 [H+] + [ O H - ]  + 1 + r------T (17) 

This is equivalent to dividing the buffer capacity 
into the sum of contributions, as shown in Eqn 2. 
In Eqn 17 there are two terms independent of the 
nature of the buffer used and corresponding to 
the concentrations of H ÷ and OH-.  They deter- 
mine the increase in buffer capacity in a strongly 
acidic region and in a strongly alkaline region, 
and confirm the buffering character of concen- 
trated solutions of strong acids and bases 

vo 
[H +] + [ O H - ]  + CA------~fof  1 

vo+ 
/3 = In 10 (12) CA 

1 + 
~-~- fo In 10 

As the equivalence point in the titration is 
reached when 

C A V  0 = CBVp.eq" (13) 

taking into account the dilution parameter r 

C A 
r = - -  (14) 

CB 

In 10 
fin+= 1 + rfo [H+] (18) 

/ 3 o n - =  - -  [ O H -  ] (19)  
l + r f  0 

As the value of f0, the molar fraction of the A -  
species of the monoprotic acid, tends to unity as 
the alkalinity of the solution increases and be- 
comes smaller as the  concentration of hydrogen 
ion rises, the individual contributions of/3H+ and 
/3oH- to the total buffer capacity are not strictly 
symmetrical with respect to a pH value equal to 
pKw/2. 
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The buffer contribution of the HA/NaA sys- 
tem, /3.A, is given by 

lnlO ( C A f ° f ' )  (20) 
~3HA-- 1 + rfo 1 + rT 

However, it should be noted that in Eqns 17 and 
20 the volume and the concentration of the solu- 
tion being titrated are used directly (via r or T), 
so that the change in /3 during the titration of a 
weak acid with a strong base depends on the 
initial concentrations or the dilution of the solu- 
tion during titration (Meites and Goldman, 1963). 

Most buffers have pH values between 3 and 11 
and total concentrations C A between 0.01 and 0.1 
mol I- ~; the buffer value is then virtually fixed by 
the third term of Eqn 17 (i.e., Eqn 20). 

Nevertheless, on titration of a strong acid of 
initial concentration C H and volume V 0 with a 
strong base of concentration C B, the following 
equation may be similarly derived 

in 10 
/3 1 + R ([H+] + [OH-])  =/3H++/30. (21) 

where 

CH 
R - (22) 

CB 

the /3n+ and /3on- terms in this case being sym- 
metrical with respect to pKw/2. 

Solutions of strong acids or bases are used to 
adjust pH only in both extreme regions of the pH 
scale where high values of buffer capacity must 
be reached, alkali metal salts of strong acids 
being added to maintain constancy of ionic 
strength; pH values of such buffers fall outside 
the usual range of interest in physiology and 
chemistry. 

When the titration of a mixture of strong and 
weak acids of total volume V 0 and concentrations 
CH and CA, respectively, is carried out by the 
addition of a strong base, an entirely analogous 
treatment leads to the following expression 

l n l 0  ( C A f o f i )  
/3= l + R + r f o  [ H + ] + [ O H - ] +  I + R + r T  

(23) 

with T in this case being equal to 

CBV- C . ~  
T (24) 

CAVo 

If [H +] and [OH-] can be disregarded com- 
pared with the concentration of the buffer con- 
stituents, i.e., if the concentration of hydrogen 
and hydroxide ions is low compared with the 
degree of dissociation, as occurs in moderately 
alkaline or acidic solutions, then the graph of the 
titration fraction vs pH (the titration curve) is 
identical with that of the degree of dissociation vs 
pH 

)co = T (25) 

and then 

CAf, fo 
/3HA = In 10 (1 + rf0)  2 (26) 

Maximum buffer capacity of the/3tt~ curve 

The slope of the plot of/3 vs pH may be found 
by differentiating Eqn 26 with respect to pH, and 
is given by 

d/3HA f0(1 -- f0)((2 + r ) f  o -- 1) 
dpH lnZl0ca (1 + rfo) 3 

(27) 

Values of d /3na /dpH= 0 will locate singular 
points in the graph o f / 3 ~  vs pH. Apart from the 
trivial solutions f0 = 0, or f0 = 1, which corre- 
spond to limiting values to which the graph tends 
asymptotically to zero, we have 

1 
' ( 2 8 )  

f ° =  2 + r  

and then 

l + r  
= - ' = (29) fl' 1 f0 2 + r  



TABLE 1 

Effect of dilution on the point of maximum buffer capacity 

r p K a - p H '  f~ 

0 0 0.500 
0.05 0.021 0.488 
0.1 0.041 0.476 
0.2 0.079 0.455 
0.4 0.146 0.417 
0.5 0.176 0.400 
1.0 0.301 0.333 
1.5 0.398 0.286 
2.0 0.477 0.250 

The hydrogen ion concentration at such a station- 
ary point (maximum) is given by 

f [  = K . ( 1  + r)  [H ' ]  = Kay-- ~ (30) 

By substituting the values of f0 and f~ given by 
Eqns 28 and 29 into Eqn 26, we obtain 

In 10 C A 
t hA + (31) 

4 l + r  

The maximum buffer capacity in the titration 
of a weak monoprotic acid with a strong base 
proceeds at pH values 

pH'  = pKa - log(1 + r)  (32) 

lower than the value of pK a, when one takes into 
account the dilution effect (Table 1). Only in the 
particular case in which dilution is ignored (r = 0; 
coulometric titrations) does pH'  coincide with 
the pK a Value of the H A / N a A  system. 

The flHA VS pH curve given by Eqn 26, how- 
ever, is symmetric with respect to the pH '  point. 
In effect, making (charges being omitted for sim- 
plicity in the following) 

[H] 
Y = [H ' ]  (33) 

we obtain 
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and taking into account Eqn 30 we have 

[H] = (1 + r ) g a y  (35) 

which, substituted into Eqn 26 leads to 

In 1 0 C  A 1 
= - -  (36) 

/3HA l + r  2 +  ( l + y )  

which may be expressed in an equivalent hyper- 
bolic cosine relationship 

J~HA 

In i0C A 1 
= - -  (37) 

1 + r  2 ( l + c o s h ( l n  1 0 a p H* ) )  

which is symmetrical with respect to the pH'  
values as cosh x = cosh(-x) .  

Inflexion points in the flHA VS p H  curve 

Differentiation of Eqn 25 with respect to pH 
gives 

dZ]J 

dpH 

CAf° f '  [(1 -- 2f0)[(2 + r ) f  o -  1] = -ln310 (1 + 40) 4 

+fo(1 - f o ) ( 2  + r ) ]  

• [ ( i  + rfo ) - 3rfo(1 - f o ) [ ( 2  + r ) f  o - 11] 

which, on rearrangement, leads to 

(38) 

d 2 3  C A f o f  1 
ln310 

d(pH) 2 (1 + rfo) 4 

X [(r  2 + 6r + 6)f( 2 - (4r + 6 ) f  o + 1 ]  

ApH* = pH '  - pH = log y (34) (39) 
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In this way, by substituting the values of fl~ and 
f [  given by Eqns 28 and 29, respectively, into eqn 
39, we obtain 

pn CA d2/3 = -ln310 8(1 + r) < 0 (40) 
d ~  =pH' 

the condition d/3/dpH = 0 consequently leading 
to a maximum in the buffer index as previously 
indicated. 

Letting dZ/3/d(pH) 2 = 0 we have 

( r 2 + 6 r + 6 ) f , ; ' 2 - ( 4 r + 6 ) f , ; ' + l = O  (41) 

Solving this quadratic equation, we obtain for f~' 
the two values 

r ( 2 +  ( 5 )  + 3  + ( 5  
" = (42) 

(f0)(1) r 2 + 6 r + 6  

r ( 2 -  ( 5 )  + 3 -  ( 5  
" = (43) 

(f0)~n) r Z + 6 r + 6  

and then, the corresponding values of fl" are 
given by 

r 2 + r ( 4 -  ( 5 )  + 3 -  ( 5  
= ( 4 4 )  

( f ( ' )m  r 2 + 6 r + 6  

r 2 + r(4 + ¢5)  + 3 + ¢5 
= (45) 

(fl")(II) r 2 + 6r + 6 

By substituting the values of f0 and fl  at the 
inflexion points into the acidity constant expres- 
sion we obtain two hydrogen ion concentration 
values 

r z + r(4 - 3 f 3 )  + 3 - f 3  
[H"](1) = ga r(2 + ~/3) + 3 + !/5 (46) 

r2 + r(4 + ( 5 )  + 3 + vc3 
[H"l(n) = Ka r ( 2 -  ~ - )  + 3 - ~3- (47) 

and making 

a = 3 -Y- V~- (48) 

we have 

[H"] = Ka(2 • f 3  ) (r + a ) ( r  + 1) 

= K~(2 T ¢3 ) ( r  + 1) (49) 

and then, taking into account Eqn 30, we obtain 
finally 

p H " =  pH'  - log(2 T- x/3-) = p H ' +  0.5719 (50) 

The inflexion points are symmetrically disposed 
about the point of maximum buffer capacity, pH'. 
The same conclusion may be drawn by substitut- 
ing the value of f~' as a function of K~ and [H"] 

Ka 
f ~ ' -  K a + [H"] (51) 

into Eqn 41 and taking into account Eqn 30 

[H"] 2 -  4 [H ' ] [H"]  + [H']  2 = 0 (52) 

which leads (as before) to 

[U"] 
- 2 _+ v ~  ( 5 3 )  

[H']  

The buffer capacity at the inflexion points may 
be evaluated either by substituting the values of 
f~' and f['  (given by Eqns 42, 44 and 43, 45, 
respectively) into Eqn 26, or by substituting the 
value of [H"] given by Eqn 49 into 

Ka[n] 
flHA = In 10C A (Ka(1 + r) + [H]) ~ (54) 

an expression easily derived from Eqn 26, which 
in both cases leads to 

In 10C A (55) 
flr~A = 6(1 + r) 

and then, the following identity is satisfied 

/3hn 3 
(56) 

/3~A 2 



Singular points in the dV / dpH vs pH curve 

Although the maximum buffer capacity is not 
reached at a pH value equal to the pK a, no 
special problems are encountered in the evalua- 
tion of the acidity constant of a moderately weak 
acid by potentiometry, based on the location of 
the singular point of the V vs pH curve. 

From Eqns 4-6, we obtain 

v v0 
CB V0 +-------~ + [H] = [OH] + CA------~,fo (57) v0+ 

and then the following expression may readily be 
derived 

Vo 
(CAfo + cB) v,, + v cB + [H] - [OH] (58) 

which, combined with Eqn 11, yields 

dV 

dpH 

= I n  10 
(V o + V)( [H]  + [OH]) + VoCAf, f o 

C B + [H]  -- [ O H ]  

(59) 

In moderately acidic or basic medium, the 
hydrogen and hydroxide ion concentration may 
be neglected with respect to t h e  other basic or 
acidic species, and then 

dV VoCAf l f  o 
- In 10 = In lOVorflfo (60) 

dpH CB 

The first and second derivatives of dV/dpH vs 
pH are respectively given by 

d2V 
d(pH)2 - - ln21OVorfof l( fo - f ,) (61) 
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and 

d3V 
d(pH)3 -ln31OVorfofl(fl  2 - 4 f i fo  + f~)  (62) 

Examination of Eqn 61 reveals that 

(f0 = f~) v"=0 (63) 

which implies 

(PH) v,,=0 = PKa (64) 

This point is a maximum, since d3V/d(pH) 3 at 
this point is negative and equals - 1.5260Vor. 

The inflexion points in the graph of dV/dpH 
vs pH may be calculated from the condition 
d3V/d(pH) 3 = 0 which leads to 

( f l  "2 - 4f;'fd' + fd'2)v,,, = 0 (65) 

Replacing fl" by 1 - f d '  and operating, we have 

(6 f~ '2-6 f~ '+ 1)v,,, = 0 (66) 

which coincides with the expression, Eqn 41, when 
r = 0, and then, Eqn 49 (r = 0) is also applicable 
in this case 

[rc']v,,, 

[H'Iv,,  
- -  = 2 _+ v~- ( 6 7 )  

Advances in instrumentation enable the auto- 
matic recording during an acid-base titration not 
only of pH, but also of the rate of change of pH 
with change in titre (Covington et al., 1978). 

Variation of  the buffer capacity with change in the 
salt /acid ratio 

In order to locate the maximum value in the 
curve which describes the variation of buffer ca- 
pacity with the proportion of salt to acid, we must 
derive Eqn 26 against f0 

d/3 In 10 
d--~o - (1 + rfo) 3 [1 - ( r  + 2)fo] (68) 
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TABLE 2 

Effect of dilution on the maximum attd 
graph off I~HA against fo 

inflexion point in the 

r k; k',' 
1.0 0.333 1.000 
1.1 0.323 0.938 
1.2 0.313 0.885 
1.3 0.303 0.839 
1.4 0.294 0.798 
1.5 0.286 0.762 
2.0 0.250 0.625 

The condition for maximum is given by d /3 /d f0  
= 0, and then, again 

1 
f,; - (69) 

r + 2  

On the other hand, by straightforward differenti- 
ation of Eqn 68, we obtain 

d 2 / 3 -  l n l0CA [ 2 r + l - - r f o ( r + 2 ) ]  (70) 
dr,  2 (1 "q- d 0 )  4 

d2 /3 /d f  2 = 0 requires 

2 r + l  
f~' - - -  (71) 

r ( 2 + r )  

Since Eqn 71 is single-valued, there is only one 
inflexion point, which lacks physical significance 
only in those cases in which r > 1 (Table 2). 
Values of r lower than the unity lead to no 
physically meaningful f~' values (i.e., f~' > 1). 

Only in those cases in which r = 0 is the /3 vs 
f0 curve symmetrical. In effect, making 

1 
' - + p  (72) fo = f d  + P  2 + r 

we have 

/3hA = In 10 
[1 + (2 + r ) p ]  [1 + r -  (2 + r ) p ]  

[2(1 + r )  + r (2  + r ) p ]  2 

and then, when r = 0, it follows that 

In 10C a 
/3HA 4 (1 + 2 p ) ( l - - 2 p )  (74) 

On the other hand, from Eqn 26, taking into 
account that f l  = 1 - f 0 ,  the following quadratic 
equation in f0 is derived 

(1 + r2/3*)f2 + (2r/3" - 1)fo + /3"  = 0  (75) 

where 

/3ua /3" (76) 
In 10C a 

The roots of Eqn 75 give the f0 values for 
which the same value of /3UA is obtained 

0.5 - r/3* _+ ¢0.25 - / 3 " ( 1  + r)  
f0 = 1 + re# * (77)  

the ratio of salt to acid consequently being given 
by 

fo 0.5 - r/3* +_ ¢0.25 - / 3 " ( 1  + r)  

f, 0.5 + r/3*(1 + r)  -T- ¢0.25 - / 3 " ( 1  + r)  

(78) 

In those cases in which dilution is neglected 
(r  = 0), Eqn 78 leads to 

f0 0.5 + ¢0.25 - / 3 "  
(79) 

f, 0.5 -v ¢0.25 -/3" 

It should be borne in mind that the maximum 
attainable value for the buffer index is given by 
Eqn 31 

(73) /3* 4(1 + r)  0.25 ( r = 0 )  (80) 



Conclusion 

A n  essent ial  factor in calculat ion buffer  capac- 
ity in the t i t ra t ion of a weak acid with a s trong 
base is the change  in volume resul t ing from dilu- 

t ion of the solut ion as t i t rant  is added. W h e n  
di lut ion is taken into account  in the algebraic 

t r ea tmen t  of buffer  capacity, a n u m b e r  of differ- 

ent  conclusions regarding the locat ion of the max- 
imum and  inflexion points  in the buffer  index vs 

pH curve may be drawn. 
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